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Exact Bit Error Rate Analysis of Ambient
Backscatter Systems Under Fading Channels

J. Kartheek Devineni and Harpreet S. Dhillon

Abstract—The success of Internet-of-Things (IoT) relies on
enabling the reliable exchange of data at low-rate and low-
power among billions of battery-operated energy-constrained
IoT devices. Ambient backscattering, with its technological ca-
pability of simultaneous information and energy transfer is
quickly emerging as an appealing solution for this communication
paradigm. In this paper, we investigate the detection of binary
data transmitted using ambient backscatter at a receiver tracking
the channel state information (CSI) of a flat-fading Rayleigh chan-
nel, and characterize the corresponding performance in terms of
the bit-error probability. A binary hypothesis testing problem
is formulated for the received signal and the performance of
the receiver under mean threshold (MT) detection technique is
analyzed. Two main contributions of the analysis that distinguish
this work from the prior art are the characterization of the
average signal energy in terms of the exact conditional density
functions, and the characterization of average bit error rate
(BER) expression for this setup. The key challenge lies in the
handling of correlation between channel gains of two hypotheses
for the derivation of joint probability distribution of magnitudes
of channel gains that is needed for the BER analysis.

Index Terms—Ambient backscattering, BER, Internet of
Things, Hypothesis testing, Noncentral chi-squared distribution.

I. INTRODUCTION

Internet of Things (IoT) is an exciting new paradigm
where billions of inter-connected devices sense the physical
world, exchange information and take appropriate decisions
of everyday events with minimal human intervention. Two
important aspects that are essential to enable this vision are
the self-sustainability of the IoT devices and the periodic
communication among these devices to exchange information.
Ambient Backscatter is a promising new technology with the
potential to support this low-power and low-rate communica-
tion to nearby devices. Ambient backscattering harvests energy
from electromagnetic (EM) waves that are already present
in the environment, like radio-frequency (RF) and television
(TV) waves, and simultaneously backscatter data generated by
modulating the reflected waves [1], [2].

The proof-of-concept systems related to the design of am-
bient backscatter have been developed in [1]–[5], which have
demonstrated the feasibility of practical implementation of the
technology. On the other hand, the investigation on theoretical
aspects like throughput, error rates, and performance is still
in nascent stages. Several important steps in this direction
have been taken in [6]–[14] where BER analysis for ambient
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backscattering under different setups including different mod-
ulation schemes, non-coherent and semi-coherent detection,
modulation over orthogonal frequency division multiplexing
(OFDM) signals and receiver with multiple antennas, are
investigated. The key enabler of the analysis in [6]–[14] is
the approximation of average signal energy as Gaussian dis-
tributed. Despite this progress, the following two fundamental
problems are still open for ambient backscatter systems: (i)
the characterization of the exact distribution of average signal
energy and (ii) the characterization of exact average BER in
fading channels. Tackling these two problems is the main focus
of this paper. Further details on the main contributions of the
paper are presented next.

Contributions: We show that the exact conditional den-
sity functions of the average energy of the received signal
follow noncentral chi-squared distribution (NC-χ2). Charac-
terization of the exact conditional signal distribution is an
important component in the optimal performance analysis,
which differentiates our work from the earlier works that
approximated this distribution as Gaussian [6]–[9]. Using this
result on conditional distributions, a binary hypothesis testing
problem is formulated and the detection is performed by
comparing the average energy of the signal to a threshold.
In this paper, we focus on mean threshold detection in
which the threshold is calculated as the mean of conditional
expectations of the average signal energy received under
different hypotheses. A key challenge in the error analysis
is the need to characterize the joint distribution of correlated
fading components belonging to the different hypotheses. In
particular, although the individual links in the system may
experience independent fading, overlapping backscatter data
onto radio signals eventually results in different but correlated
fading components for the two hypotheses. We derive the exact
expression of this joint distribution function required for the
average BER analysis. A key driver of this evaluation is the
independence of fading component of the alternate hypothesis
conditioned on fading component of the null hypothesis.

II. SYSTEM MODEL

We consider a pair of devices, of which one is a backscatter
transmitter (BTx) and the other is a receiver (Rx). We assume
the presence of modulated carrier waves generated by a source
in the environment, henceforth referred to as ambient waves
and ambient source respectively, and the devices communicate
through scattering of the incident ambient waves. This is a
valid assumption since such sources of carrier waves, for ex-
ample TV, cellular or Wi-Fi networks, are almost omnipresent.
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Backscatter derives its name from the mode of information
exchange, which is to communicate data through reflection of
RF waves, and the procedure of backscattering ambient RF
waves is called ambient backscatter. To understand the opera-
tion of data modulation using backscatter, it is essential to look
at the propagation of an electromagnetic (EM) wave between
different surfaces. When EM waves received at an antenna
propagate through load, part of the wave is reflected back into
free space due to impedance mismatch between the antenna
and the load component (which forms the main circuit) and
is used for backscattering data. The load impedance typically
is of a complex value and the reflection coefficient α at the
boundary between antenna and load is given by [15]:

α =

ZL
Z∗
a
− 1

ZL
Za

+ 1
, (1)

where ZL and Za are the impedances of the load and antenna
respectively and the symbol ∗ represents complex conjugate.
In order to transfer all the power to load, the load impedance
is set to ZL = Z∗a which is known as maximum power transfer
matching. On the other hand, in order to reflect all the power,
the load impedance is set to ZL = 0. Therefore, ZL = Z∗a
and ZL = 0 are known as non-reflecting and reflecting
states respectively. The backscatter system can leverage this
to modulate data by tuning impedance of the load to vary
reflection coefficient at this boundary. A simple modulation
scheme is to tune the circuit between reflecting and non-
reflecting states when transmitting bits 1 and 0, respectively.
The system model for the ambient backscatter is illustrated
in Fig. 1. The devices in the network are assumed to either
have their own power source or generate enough power from
the ambient waves to run their circuits. The latter assumption
is valid mainly because the ambient backscatter systems are
designed to operate at a very low power, of the order of few
µW s.

A. Channel Model

In this paper, we assume that the backscatter transmitter and
receiver are located in a rich scattering environment, for which
flat Rayleigh fading channel is a prominent choice. Handling
more general fading distributions is a useful direction of future
work. In the backscatter setup illustrated in Fig. 1, there are
two direct communication links, one each from ambient source
to transmitter and receiver, and one backscatter communication
link, from transmitter to receiver. The fading components of
the direct links to receiver and transmitter, and the backscatter
link are independent, identically distributed and are denoted by
hr, ht and hb, respectively. The average energy of the ambient
signal is assumed to be unity and the variance σ2 of zero mean
complex additive Gaussian noise is varied to obtain different
SNR values. For this reason, the exact units of signal energy
are not needed and SNR is used as a measure of the signal
strength in the distribution plots.

B. Signal Model

At the BTx, a simple binary on-off modulation scheme
is implemented using reflecting and non-reflecting states to

Ambient 
RF source

Backscatter Tx Rx

Direct links of 
ambient RF waves 
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Signal at Rx: 
y(n) = hr x(n) +

!hb b(n) ht x(n)+ w(n)

ht x(n) hr x(n)

h t h
r

!hb b(n) ht x(n)

hb

Fig. 1. System model of ambient backscatter communication system.

transmit digital bits. The desired signal at the Rx (shown in
Fig. 1) is the sum of two components, one directly received
from the ambient source and the other reflected from the
BTx. The received signal of an ambient backscatter system
is mathematically expressed as follows:

y(n) = hrx(n)︸ ︷︷ ︸
radio signal

+αhb b(n) htx(n)︸ ︷︷ ︸
backscatter signal

+ w(n)︸ ︷︷ ︸
i.i.d Gaussian noise

, (2)

where x(n) and w(n) are complex baseband ambient radio and
complex additive Gaussian noise signals respectively, b(n) ∈
{0, 1} is the backscatter data and α is the reflection coefficient
of the transmitter node at the boundary of antenna and circuit.

The radio signals will be carrying the ambient source data
at a higher rate compared to the backscatter data. This simple
fact can be exploited to separate backscatter data from ambient
source data, which is achieved by averaging energy of finite
samples of the received signal (given by length N ) over which
the backscatter data remains constant [1]. The average energy
of x(n) over a sample length N is assumed to be a constant
given by:

Ē =
1

N

N∑
n=1

|x(n)|2. (3)

As b(n) remains the same over sample length N , the model
in (2) can be simplified, by taking b(n) = b, as follows:

y(n) = (hr + αhbhtb)x(n) + w(n), (1 ≤ n ≤ N). (4)

To further simplify the model, received signal y(n) can be
expressed separately for each value of bit b with the following
fading components:

y(n) =

{
h0 x(n) + w(n), b = 0,

h1 x(n) + w(n), b = 1,
(5)

where h0 = hr and h1 = hr + αhbht are fading components
dependent on backscatter data b. The magnitude square of the
fading components are denoted by µ = |h0|2 and ν = |h1|2.

Remark 1. It should be noted that the fading terms h0 and
h1 (also µ and ν) are different and are correlated due to
the common term hr in their expressions, unlike a traditional
BPSK system which has a single fading term.
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The receiver is assumed to track CSI which means that both
h0 and h1 are known at the receiver. This assumption will be
relaxed in the expanded version of the paper where detection
without channel information will also be studied.

III. SIGNAL DETECTION

A. Exact Distribution Functions

The BTx node will modulate its own data onto the reflected
ambient radio waves which means that the Rx node has to
implement a mechanism to separate backscatter data from
the ambient source data. For this purpose, energy of the
received signal is averaged over a window of N samples. This
mechanism results in a random variable (RV) Y representing
the average signal energy, and the operation is represented as
follows [1]:

Y =
1

N

N∑
n=1

|y(n)|2 =
1

N

N∑
n=1

|(hr + αhb b ht)x(n) + w(n)|2.

(6)

This problem is formulated as a binary hypothesis testing
problem where the scenarios conditioned on bits b = 0 and
b = 1 are taken as H0 (Null Hypothesis) as H1 (Alternate
Hypothesis) respectively:

H0 : Y =
1

N

N∑
n=1

|h0x(n) + w(n)|2, b = 0, (7)

H1 : Y =
1

N

N∑
n=1

|h1x(n) + w(n)|2, b = 1. (8)

The conditional probability density functions (PDFs) of Y are
crucial in the detection and estimation of the transmitted bit
and are derived in the following Lemma.

Lemma 1. The PDF of Y conditioned on H0, µ and H1, ν
are respectively given by:

fY |H0,µ(t) =
2N

σ2

∞∑
i=0

e−
µNĒ

σ2

(
µNĒ
σ2

)i
i!

fχ2(
2N

σ2
t; 2N + 2i),

(9)

fY |H1,ν(t) =
2N

σ2

∞∑
i=0

e−
νNĒ
σ2

(
νNĒ
σ2

)i
i!

fχ2(
2N

σ2
t; 2N + 2i).

(10)

Proof: See Appendix A.

Remark 2. It can be observed that the PDFs of Y conditioned
on H0 and H1 are respectively dependent only on parameters
µ and ν, which are the squares of absolute values of the
respective channel coefficients h0 and h1. Thus, the average
BER can be written as the expectation of BER conditioned
jointly (since they are not independent) on just µ and ν.

B. Comparison with Approximate Distribution Functions

The exact conditional PDFs derived here are compared with
the approximations available in the literature. An alternate
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Fig. 2. Comparison of exact (derived in this paper) and approximate
conditional PDFs [9] of average signal energy Y for µ = 1, ν = 1.625
(left) and µ = 1, ν = 0.625 (right) at SNR = 0 dB, N = 150.

representation of Y can be derived by expanding (6) and is
given by the expression:

Y = |hr + αhbhtb|2Ē︸ ︷︷ ︸
constant

+
1

N

N∑
n=1

|w(n)|2︸ ︷︷ ︸
Central-χ2 RV

+
2

N
Re

{
(hr + αhbhtb)

N∑
n=1

x(n)w∗(n)

}
︸ ︷︷ ︸

Gaussian RV

, (11)

The Gaussian approximation of Y can be made by ap-
proximating the Central-χ2 RV with its mean value. This
approximation is equivalent to the approximation given for a
large value of N in [9], which is also the preferred mode
of approximation in the referenced paper. The exact and
approximated conditional PDFs of the average signal energy
Y for N = 150 and SNR = 0 dB are compared in Fig. 2,
and the deviation in the plots is clearly noticeable. The other
approximated distributions, provided for a small value of N in
[9], are also compared with our exact distributions, the results
of which will be included in the extended version of the paper.
As expected, the exact distributions derived in this paper match
exactly with the simulated conditional PDFs. The impact of
channel variations on the conditional PDFs is analyzed by
plotting them for two sets of values of channel parameters
µ and ν. When the two sub-plots in Fig. 2 are compared,
the conditional distributions of two hypotheses are observed
to interchange their positions which means that the relative
positions of the conditional distributions of two hypotheses
change with channel parameters µ and ν.

C. Detection Threshold

Due to space constraints, we focus on a simple detection
strategy, which we term as MT detection. More complex
threshold techniques including maximum likelihood (ML) de-
tection will be analyzed in the expanded version. The threshold
value of MT detection method is evaluated as the mean of
the conditional expectations of average signal energy Y given
H0, µ and H1, ν:

Tmt =
E[Y |H0] + E[Y |H1]

2
= σ2 +

Ē(µ+ ν)

2
. (12)

IV. BIT ERROR RATE ANALYSIS

As noted in Remark 2, average BER of an ambient backscat-
ter system (ABS) is dependent on joint distribution of the
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fading components µ and ν. The analytical expression of the
average BER in a fading channel can be written as:

Pe,ABS = Eµ,ν [P (e|µ, ν)] (13)

=

∫ ∞
0

∫ ∞
0

fµ,ν(µ, ν)P (e|µ, ν) dν dµ, (14)

where fµ,ν(µ, ν) is the joint probability density of fading
components µ and ν, and P (e|µ, ν) is the error probability
conditioned on µ and ν. The expressions of the two compo-
nents are derived next.

Lemma 2. The joint density of the fading components µ and
ν is given by the following expression:

fµ,ν(µ, ν) =
1

πσ2
h

e
− µ

σ2
h

1

2π(|α|σ2
h)2
×∫ 2π

0

∫ 2π

0

K0

(√µ+ ν − 2
√
µν cos(θh1 − θh0)
|α|σ2

h

2

)
dθh1dθh0 ,

(15)

where K0(z) is the zeroth order modified Bessel function of
second kind.

Proof: See Appendix B.

Theorem 1. The ergodic BER for a receiver with CSI in an
ambient backscatter system is:

Pe,ABS =

∫ ∞
µ=0

∫ µ

ν=0

fµ,ν(µ, ν)× 1

2

(∫ T (µ,ν)

0

fY |H0,µ(t) dt

+

∫ ∞
T (µ,ν)

fY |H1,ν(t) dt

)
dν dµ+

∫ ∞
µ=0

∫ ∞
ν=µ

fµ,ν(µ, ν)×

1

2

(∫ ∞
T (µ,ν)

fY |H0,µ(t) dt+

∫ T (µ,ν)

0

fY |H1,ν(t) dt

)
dν dµ,

(16)

where the threshold T (µ, ν) depends on the detection strategy.

Proof: The conditional error probability is given by:

P (e|µ, ν) = P (H0)P (e|H0, µ) + P (H1)P (e|H1, ν). (17)

Assuming the symbols are equally likely, the prior probabili-
ties of the two hypotheses are given by P (H0) = P (H1) = 1

2 .
The conditional error probability of each hypothesis is given
by the following relation since the relative values of µ, ν
change the position of conditional distribution curves:

P (e|H0, µ) =


T (µ,ν)∫

0

fY |H0,µ(t) dt, ν < µ,

∞∫
T (µ,ν)

fY |H0,µ(t) dt, ν ≥ µ.
(18)

P (e|H1, ν) =


∞∫

T (µ,ν)

fY |H1,ν(t) dt, ν < µ,

T (µ,ν)∫
0

fY |H1,ν(t) dt, ν ≥ µ.
(19)

Partitioning the expression in (14) piecewise over the disjoint
sets ν < µ and ν ≥ µ, and substituting the expressions of
conditional error probability, we obtain the result.
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Fig. 3. BER versus N for different SNR values.

Remark 3. Conditional error probabilities can be represented
in terms of generalized Marcum Q-function as [16], [17] :

P (e|µ, ν) =



1
2

{
1 +QN

(√
2N µĒ

σ2 ,
√

2N T (µ,ν)
σ2

)
−QN

(√
2N νĒ

σ2 ,
√

2N T (µ,ν)
σ2

)}
ν < µ,

1
2

{
1 +QN

(√
2N νĒ

σ2 ,
√

2N T (µ,ν)
σ2

)
−QN

(√
2N µĒ

σ2 ,
√

2N T (µ,ν)
σ2

)}
ν ≥ µ.

(20)

We can observe from (20) that the conditional BER expressions

are functions of the parameters N,
µĒ

σ2
,
νĒ

σ2
and

T (µ, ν)

σ2
. The

fraction
T (µ, ν)

σ2
of the MT threshold can be modified as:

Tmt

σ2
= 1 +

µĒ
σ2 + νĒ

σ2

2
, (21)

which is a function of the other three parameters N,
µĒ

σ2
and

νĒ

σ2
. The fractions

µĒ

σ2
and

νĒ

σ2
are the received SNRs under

the two hypotheses. Hence, it can be concluded that the BER of
the system depends upon the signal and noise strength through
SNR and not their respective energies separately.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we plot the analytical results derived in the
previous section to glean system design insights. The analyti-
cal results are also validated by comparing with Monte Carlo
simulations. The reflection coefficient α is set appropriately
to approximate the 1.1 dB signal attenuation mentioned in [2]
and the variance σ2

h of fading links is set to 1 for the system
evaluation. With respect to any given system parameter, we
refer to decay rate as the rate of decrement in BER with
the increasing value of that parameter. In Fig. 3, we present
the BER as a function of sample length N for different SNR
values. It can be observed that the decay rate decreases with
respect to N . A similar comparison is shown in Fig. 4 by
plotting BER against SNR for different values of N . The gain
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Fig. 4. BER versus SNR for different N values.
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Fig. 5. BER under the actual and approximated distribution for different SNR.

in SNR of the system has diminishing returns with increasing
N as the performance of the energy averaging operation at the
receiver converges to a limit, thereby limiting the improvement
in BER. The difference in BER accuracy when using the
approximated distribution instead of the exact distribution is
compared in Fig. 5. The preferred Gaussian approximation
in [9], given for large N , does not result in accurate BER
at the lower SNR range. The tightness of the approximation
improves with increasing SNR.

VI. CONCLUSION

In this paper, the exact conditional distributions of the
average energy of the received signal in ambient backscatter
is characterized in terms of the noncentral chi-squared distri-
bution. Further, the error performance of a receiver with CSI
in a flat Rayleigh fading channel is analyzed by deriving the
exact average BER expression for this system. The analytical
evaluation of the joint distribution of correlated fading compo-
nents is a key intermediate result of this analysis. Several key
insights are drawn from the aforementioned analyses. First,
BER of the ambient backscatter system is dependent on the
energies of the signal and noise as a function of SNR of the
signal and not separately on the individual energies, a trend
similar to the one observed in standard BPSK modulation.
Second, increasing the sample length N provides diminishing
returns in terms of BER improvement.

APPENDIX

A. Proof of Lemma 1

The conditional PDF of Y under H0 can be obtained from
the conditional PDF of a scaled version given by Z = Y

c ,
where c = σ2

2N . The expression of Z can be written as follows:

Z =
2

σ2

N∑
n=1

|x(n)(hr + hbαbht) + w(n)|2. (22)

Expanding x(n) = xr(n) + jxi(n), h0 = h0r + jh0i and
w(n) = wr(n) + jwi(n), where j =

√
−1, results in the form:

Z =
2

σ2

N∑
n=1

|(xr(n) + jxi(n))(h0r + jh0i)

+ wr(n) + jwi(n)|2,

=
N∑
n=1

2

σ2
(xr(n)h0r − xi(n)h0i + wr(n))

2

+
N∑
n=1

2

σ2
(xr(n)h0i + xi(n)h0r + wi(n))

2
, (23)

where each term in the two summations is a square of an
independent non-zero mean Gaussian RV with unit variance
when conditioned on fading and x(n). Also, notice that there
are a total of 2N independent real-valued RVs.

The density function of this sum is given by noncentral
chi-squared distribution [18]. This distribution is associated
with a non-centrality parameter λ which is equal to the sum
of the squared means of each Gaussian RV. The value of λ
corresponding to Z can be evaluated as:

λ =

2
N∑
n=1

(xr(n)h0r − xi(n)h0i)
2

σ2

+

2
N∑
n=1

(xr(n)h0i + xi(n)h0r)
2

σ2
(24)

=

2
N∑
n=1
|x(n)|2|h0|2

σ2
=

2
N∑
n=1
|x(n)|2µ

σ2

(a)
=

2NĒµ

σ2
. (25)

where (a) follows from the average energy given by (3).
Notice that the distribution of Z is independent of x(n)

since the parameter λ approaches a constant value because
of (3). Therefore, the PDF of Z conditioned on H0 and
µ is given by the noncentral chi-squared distribution with
parameter λ calculated above:

fZ|H0,µ(z) =
∞∑
i=0

exp(−λ2 )(λ2 )i

i!
fχ2(z; 2N + 2i)

=
∞∑
i=0

exp(−µNĒσ2 )(µNĒσ2 )i

i!
fχ2(z; 2N + 2i),

(26)

The conditional PDF fY |H0,µ(t) follows from the distribution
of scaled transformation of a RV. The conditional PDF of Y
under H1 is derived using similar procedure and is skipped.
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B. Proof of Lemma 2

The distribution of independent and identical fading terms
hr, ht and hb is given by CN (0, σ2

h). The distribution of
αhb ∼ CN (0, |α|2σ2

h), formed by combining α and hb,
follows from the scalar multiplication property of circularly
symmetric Gaussian random vectors [19].

The joint distribution of the real and imaginary parts of
fading component h0 is given by the Gaussian distribution.
Similarly, the joint distribution of the real and imaginary parts
of double Gaussian term U = αhbht of the fading component
h1 is given in [20], [21]. For completeness, the expressions
are provided below:

fh0R,h0I
(h0r, h0i) =

1

πσ2
h

exp

(
−h

2
0r + h2

0i

σ2
h

)
, (27)

fUR,UI (ur, ui) =
1

2π
(
|α|σ2

h

2

)2K0

(√
u2
r + u2

i
|α|σ2

h

2

)
, (28)

where K0 is the zeroth order modified Bessel function of
second kind.

The joint distribution of the real and imaginary parts of h1

conditioned on h0 is related to the joint distribution of U by
the shift transformation property of a RV:

fh1R,h1I |h0R,h0I
(h1r, h1i) = fUR,UI (h1r − h0r, h1i − h0i).

(29)

The joint distribution of the polar coordinates of h0 and h1 is
derived from rectangular coordinates using the transformation
property of RVs as follows:

fRh0
,Θh0

,Rh1
,Θh1

(rh0
, θh0

, rh1
, θh1

)

(h)
= fRh0

,Θh0
(rh0

, θh0
) fRh1

,Θh1|Rh0
,Θh0

(rh1
, θh1
|rh0

, θh0
)

(i)
= rh0 fh0R,h0I

(rh0 cos θh0 , rh0 sin θh0) rh1× (30)
fUR,UI (rh1 cos θh1 − rh0 cos θh0rh1 sin θh1 − rh0 sin θh0)

= rh0

1

πσ2
h

e
−
r2h0
σ2
h rh1

1

2π
(
|α|σ2

h

2

)2×

K0


√
r2
h1

+ r2
h0
− 2rh1

rh0
cos(θh1

− θh0
)

|α|σ2
h

2

 , (31)

where (h) follows from de-conditioning of RVs through chain
rule and (i) follows from the relationship between the joint
distribution functions of polar and rectangular coordinates.

The joint marginal distribution of Rh1 , Rh0 , obtained by
integrating over the ranges of Θh0 and Θh1 , is given by:

fRh0
,Rh1

(rh0 , rh1) =

∫ 2π

0

∫ 2π

0

rh0

πσ2
h

e
−
r2h0
σ2
h

rh1

2π
(
|α|σ2

h

2

)2×

K0


√
r2
h1

+ r2
h0
− 2rh1

rh0
cos(θh1

− θh0
)

|α|σ2
h

2

dθh1dθh0 .

(32)

Finally, the joint distribution of µ and ν is given by:

fµ,ν(µ, ν)
(j)
=

1

4
√
µν
fRh0

,Rh1
(
√
µ,
√
ν)

=
1

πσ2
h

e
− µ

σ2
h

1

2π(|α|σ2
h)2

∫ 2π

0

∫ 2π

0

×

K0

(√
µ+ ν − 2

√
µν cos(θh1

− θh0
)

|α|σ2
h

2

)
dθh1

dθh0
, (33)

where (j) follows from the relation between the joint PDFs
of modulus of RVs given by Rh0 and Rh1 , and the square of
modulus of the same RVs given by µ and ν, respectively.
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